Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Satya Murti Prasad,*

R. B. P. Sinha,

Deo Kumar Mandal and Asha Rani

Department of Physics, Ranchi University, Ranchi 834 008, India

Correspondence e-mail:
prasadsm50@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.054$
$w R$ factor $=0.177$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(p-Tolyl)maleamic acid

The title molecule, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$, is nearly planar, with the mean planes through the p-tolyl and maleamic acid groups inclined at an angle of $5.45(3)^{\circ}$. The glide-related molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds, forming infinite one-dimensional chains, which are assembled to form layers parallel to the $b c$ plane.

Comment

The structure of N-(p-tolyl)maleamic acid, (I), was reported previously by Prasad \& Sinha (1978), using photographic X-ray diffraction data, with an R value of 0.16 . The structure has now been refined using single-crystal X-ray diffraction data and the results are presented here.

(I)

The molecule of (I) is nearly planar, with C3 deviating by a maximum of 0.103 (3) \AA. The mean planes through the p-tolyl and maleamic acid groups are inclined at an angle of 5.45 (3) ${ }^{\circ}$ (Table 1). The bond lengths and angles in the maleamic acid group agree with those reported for the structure of maleic acid (James \& Williams, 1974). The carboxyl H atom is involved in an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with carbonyl atom O3. In the solid state, the glide-related molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming infinite one-dimensional chains along the c-cell direction. These chains are arranged so as to form layers parallel to the $b c$ plane, approximately at $x=1 / 4$ and $3 / 4$. The mean interlayer separation of $3.406 \AA$ indicates significant interactions between the aryl and maleamic acid groups; the shortest interlayer contacts are $\mathrm{C} 6 \cdots \mathrm{C} 10(-x$, $1-y, 1-z$) of $3.319(5) \AA$ and $\mathrm{C} 4 \cdots \mathrm{C} 7(1-x, 1-y, 1-z)$ of 3.351 (4) A.

Experimental

The title compound was prepared by a solid-state reaction between p-phenylaniline and maleic anhydride by Professor R. P. Rastogi (Gorakhpur University) and his co-workers (private communication) and was recrystallized from methanol at room temperature.

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$
$M_{r}=205.21$
Monoclinic, $P 2_{1} / c$
$a=6.769(2) \AA$
$b=12.109(1) \AA$
$c=12.606(1) \AA$
$\beta=95.73(1)^{\circ} \AA$
$V=1028.1(3) \AA^{3}$
$Z=4$
$D_{x}=1.326 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=28.2-36.3^{\circ}$
$\mu=0.81 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.38 \times 0.31 \times 0.25 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.029$
diffractometer	$\theta_{\max }=75.5^{\circ}$
$\omega-2 \theta$ scans	$h=0 \rightarrow 8$
Absorption correction: ψ scan	$k=0 \rightarrow 15$
(North et al., 1968$)$	$l=-15 \rightarrow 15$
$T_{\text {min }}=0.733, T_{\text {max }}=0.817$	3 standard reflections
2123 measured reflections	frequency: 60 min
2047 independent reflections	intensity decay: none

1200 reflections with I

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0899 P)^{2}\right. \\
&+0.2017 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

$w R\left(F^{2}\right)=0.178$
$S=1.04$
2047 reflections
167 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
A view of the molecular layer, close to $x=1 / 4$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N-H1N $\cdots \mathrm{O} 2^{\mathrm{i}}$	$0.93(3)$	$1.96(3)$	$2.885(3)$	$177(2)$
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{O} 3$	0.82	1.68	$2.495(2)$	173
C3-H3 $\cdots \mathrm{O} 3$	$0.98(3)$	$2.26(2)$	$2.866(3)$	$119(2)$
C8-H8 O^{i}		$0.97(3)$	$2.55(2)$	$3.498(3)$

Symmetry code: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$.
All H atoms apart from the methyl and hydroxyl H atoms were refined isotropically.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors acknowledge Professor R. P. Rastogi, Department of Chemistry, Gorakhpur University, for the gift of the crystals and the National Centre for X-ray Diffraction Facility, All India Institute of Medical Sciences, New Delhi, for the collection of the X-ray diffraction data.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft. The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
James, M. N. G. \& Williams, G. J. B. (1974). Acta Cryst. B30, 1249-1257.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Prasad, S. M. \& Sinha, R. B. P. (1978). Indian J. Phys. Sect A, 52, 583-585.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

